## 74LVC169

Presettable synchronous 4-bit up/down binary counter
Rev. 05 - 8 June $2009 \quad$ Product data sheet

## 1. General description

The 74LVC169 is a synchronous presettable 4-bit binary counter which features an internal look-ahead carry circuitry for cascading in high-speed counting applications. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs (pins Q0 to Q3) change simultaneously with each other when so instructed by the count-enable (pins $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ ) inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock (pin CP) input triggers the four flip-flops on the LOW-to-HIGH transition of the clock.

The counter is fully programmable; that is, the outputs may be preset to any number between 0 and its maximum count. Presetting is synchronous with the clock and takes place regardless of the levels of the count enable inputs. A LOW level on the parallel enable (pin $\overline{\mathrm{PE}}$ ) input disables the counter and causes the data at the Dn input to be loaded into the counter on the next LOW-to-HIGH transition of the clock. The direction of the counting is controlled by the up/down (pin U/D) input. When pin U/D is HIGH, the counter counts up, when LOW, it counts down.

The look-ahead carry circuitry is provided for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable (pins $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ ) inputs and a terminal count (pin $\overline{\mathrm{TC}}$ ) output. Both count-enable (pins $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ ) inputs must be LOW to count. Input pin $\overline{\mathrm{CET}}$ is fed forward to enable the terminal count (pin $\overline{\mathrm{TC}}$ ) output. Pin $\overline{\mathrm{TC}}$ thus enabled will produce a LOW-level output pulse with a duration approximately equal to a HIGH level portion of pin Q0 output. The LOW level pin TC pulse is used to enable successive cascaded stages.

The 74LVC169 uses edge triggered J-K type flip-flops and has no constraints on changing the control of data input signals in either state of the clock. The only requirement is that the various inputs attain the desired state at least a set-up time before the next LOW-to-HIGH transition of the clock and remain valid for the recommended hold time thereafter.

The parallel load operation takes precedence over the other operations, as indicated in the mode select table. When pin PE is LOW, the data on the input pins D0 to D3 enters the flip-flops on the next LOW-to-HIGH transition of the clock.

In order for counting to occur, both pins $\overline{\mathrm{CEP}}$ and $\overline{\mathrm{CET}}$ must be LOW and pin $\overline{\mathrm{PE}}$ must be HIGH. The pin U/D input determines the direction of the counting. The terminal count output pin $\overline{\mathrm{TC}}$ output is normally HIGH and goes LOW, provided that pin $\overline{\mathrm{CET}}$ is LOW, when a counter reaches 15 in the count up mode. The pin $\overline{\mathrm{TC}}$ output state is not a function of the count-enable parallel (pin $\overline{\mathrm{CEP}}$ ) input level. Since pin $\overline{\mathrm{TC}}$ signal is derived by decoding the flip-flop states, there exists the possibility of decoding spikes on pin TC. For this reason the use of pin $\overline{\mathrm{TC}}$ as a clock signal is not recommended; see the following logic equations:

```
count enable }=\overline{CEP}\bullet\overline{CET}\bullet\overline{PE
count up: TC = Q3 \bulletQ2 \bullet Q1 \bulletQO \bulletCET \bulletU/\overline{D}
count down: TC = \overline{Q3}\bullet\overline{Q2}\bullet\overline{Q1}\bullet\overline{Q0}\bulletCET\bullet\overline{U}/D
```


## 2. Features

- 5 V tolerant inputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low power consumption
- Direct interface with TTL levels
- Up/down counting
- Two count enable inputs for n-bit cascading

■ Built-in look-ahead carry capability

- Presettable for programmable operation
- Complies with JEDEC standard JESD8-B / JESD36
- ESD protection:
- HBM JESD22-A114D exceeds 2000 V
- CDM JESD22-C101C exceeds 1000 V

■ Multiple package options

- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.


## 3. Ordering information

Table 1. Ordering information

| Type number | Temperature range | Package |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Name | Description | Version |  |
| $74 \mathrm{LVC169D}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SO16 | plastic small outline package; 16 leads; <br> body width 3.9 mm | SOT109-1 |
| 74 LVC 169 DB | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SSOP16 | plastic shrink small outline package; 16 leads; <br> body width 5.3 mm | SOT338-1 |
| $74 \mathrm{LVC169PW}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TSSOP16 | plastic thin shrink small outline package; 16 leads; <br> body width 4.4 mm | SOT403-1 |
| $74 \mathrm{LVC169BQ}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | DHVQFN16 | plastic dual in-line compatible thermal enhanced very thin <br> quad flat package; no leads; 16 terminals; <br> body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$ | SOT763-1 |

## 4. Functional diagram



Fig 1. Logic symbol


Fig 2. IEC logic symbol


Fig 3. Logic diagram

## 5. Pinning information

### 5.1 Pinning



### 5.2 Pin description

Table 2. Pin description

| Symbol | Pin | Description |
| :--- | :--- | :--- |
| U/D | 1 | up/down control input |
| CP | 2 | clock input (LOW-to-HIGH, edge-triggered) |
| D0 to D3 | $3,4,5,6$ | data input |
| $\overline{C E P}$ | 7 | count enable input (active LOW) |
| GND | 8 | ground (0 V) |
| $\overline{\text { PE }}$ | 9 | parallel enable input (active LOW) |
| $\overline{C E T}$ | 10 | count enable carry input (active LOW) |
| Q0 to Q3 | $14,13,12,11$ | flip-flop output |
| $\overline{T C}$ | 15 | terminal count output (active LOW) |
| $V_{C C}$ | 16 | supply voltage |

## 6. Functional description

Table 3. Function table[1]

| Operating modes | Input |  |  |  |  |  | Output |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CP | U/D | CEP | CET | PE | Dn | Qn | TC |
| Parallel load (Dn to Qn) | $\uparrow$ | X | X | X | 1 | 1 | L | * |
|  | $\uparrow$ | X | X | X | 1 | h | H | * |
| Count up (increment) | $\uparrow$ | h | 1 | 1 | h | X | count up | * |
| Count down (decrement) | $\uparrow$ | 1 | 1 | 1 | h | X | count down | * |
| Hold (do nothing) | $\uparrow$ | X | h | X | h | X | qn | * |
|  | $\uparrow$ | X | X | X | h | X | qn | H |

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level steady state
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH clock transition
L = LOW voltage level steady state
I = LOW voltage level one set-up time prior to the LOW-to-HIGH clock transition
qn = Lower case letters indicate state of referenced output prior to the LOW-to-HIGH clock transition
X = don't care
$\uparrow=$ LOW-to-HIGH clock transition

* = The $\overline{\mathrm{TC}}$ is LOW when $\overline{\mathrm{CET}}$ is LOW and the counter is at terminal count

Terminal count up is (HHHH) and terminal count down is (LLLL)


Fig 6. State diagram


The following sequence is illustrated:

- Load (preset) to thirteen.
- Count up to fourteen, fifteen (maximum), zero, one and two.
- Inhibit.

Countdown to one, zero (minimum), fifteen, fourteen and thirteen.
Fig 7. Typical timing sequence

## 7. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol | Parameter | Conditions | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{C C}$ | supply voltage |  | -0.5 | +6.5 | V |
| $\mathrm{I}_{\mathrm{IK}}$ | input clamping current | $\mathrm{V}_{1}<0 \mathrm{~V}$ | -50 | - | mA |
| $V_{1}$ | input voltage |  | [1] -0.5 | +5.5 | V |
| lok | output clamping current | $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ or $\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$ | - | $\pm 50$ | mA |
| $\mathrm{V}_{0}$ | output voltage |  | [1] -0.5 | $\mathrm{V}_{C C}+0.5$ | V |
| 10 | output current |  | - | $\pm 50$ | mA |
| $\mathrm{I}_{\mathrm{CC}}$ | supply current |  | - | 100 | mA |
| $\mathrm{I}_{\text {GND }}$ | ground current |  | -100 | - | mA |
| $\mathrm{T}_{\text {stg }}$ | storage temperature |  | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{P}_{\text {tot }}$ | total power dissipation | $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | [2] | 500 | mW |

[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.
[2] The output voltage ratings may be exceeded if the output current ratings are observed.
[3] For SO16 packages: above $70^{\circ} \mathrm{C}, \mathrm{P}_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$.
For (T)SSOP16 packages: above $60^{\circ} \mathrm{C}$, $\mathrm{P}_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$.
For DHVQFN16 packages: above $60^{\circ} \mathrm{C}, \mathrm{P}_{\text {tot }}$ derates linearly with $4.5 \mathrm{~mW} / \mathrm{K}$.

## 8. Recommended operating conditions

Table 5. Recommended operating conditions

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{CC}}$ | supply voltage | for maximum speed performance | 2.7 | - | 3.6 | V |
|  |  | for low-voltage applications | 1.2 | - | 3.6 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | input voltage |  | 0 | - | 5.5 | V |
| $\mathrm{~V}_{\mathrm{O}}$ | output voltage |  | 0 | - | $\mathrm{V}_{\mathrm{cC}}$ | V |
| $\mathrm{T}_{\mathrm{amb}}$ | ambient temperature | in free air | -40 | - | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\Delta \mathrm{t} / \Delta \mathrm{V}$ | input transition rise and fall rate | $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to 2.7 V | 0 | - | 20 | $\mathrm{~ns} / \mathrm{V}$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V | 0 | - | 10 | $\mathrm{~ns} / \mathrm{V}$ |

## 9. Static characteristics

Table 6. Static characteristics
At recommended operating conditions. Voltages are referenced to GND (ground = 0 V ).

| Symbol | Parameter | Conditions | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ[1] | Max | Min | Max |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{C C}=1.2 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{CC}}$ | - | - | $\mathrm{V}_{\mathrm{CC}}$ | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V | 2.0 | - | - | 2.0 | - | V |
| VIL | LOW-level input voltage | $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ | - | - | GND | - | GND | V |
|  |  | $\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 3.6 V | - | - | 0.8 | - | 0.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V | $\mathrm{V}_{\mathrm{CC}}-0.2$ | $\mathrm{V}_{\mathrm{CC}}$ | - | $\mathrm{V}_{\text {CC }}-0.3$ | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | 2.2 | - | - | 2.05 | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | 2.4 | - | - | 2.25 | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | 2.2 | - | - | 2.0 | - | V |
| $\mathrm{V}_{\text {OL }}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |  |  |
|  |  | $\mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V | - | GND | 0.2 | - | 0.3 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA} ; \mathrm{V}_{C C}=2.7 \mathrm{~V}$ | - | - | 0.4 | - | 0.6 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ | - | - | 0.55 | - | 0.8 | V |
| 1 | input leakage current | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND | - | $\pm 0.1$ | $\pm 5$ | - | $\pm 20$ | $\mu \mathrm{A}$ |
| $I_{\text {cc }}$ | supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$ | - | 0.1 | 10 | - | 40 | $\mu \mathrm{A}$ |
| $\Delta l_{\text {CC }}$ | additional supply current | $\begin{aligned} & \text { per input pin; } \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$ | - | 5 | 500 | - | 5000 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{1}$ | input capacitance | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 V ; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}$ | - | 5.0 | - | - | - | pF |

[1] All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ (unless stated otherwise) and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

## 10. Dynamic characteristics

Table 7. Dynamic characteristics
Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 13.

| Symbol | Parameter | Conditions |  | $-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  | $-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ[1] | Max | Min | Max |  |
| $\mathrm{t}_{\mathrm{pd}}$ | propagation delay | CP to Qn; see Figure 8 [2] | [2] |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ |  | - | 17 | - | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ |  | 1.5 | - | 7.2 | 1.5 | 9.0 | ns |
|  |  | $\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V |  | 1.5 | 4.0 | 6.6 | 1.5 | 8.5 | ns |
|  |  | CP to $\overline{\mathrm{TC}}$; see Figure 8 [2] |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=1.2 \mathrm{~V}$ |  | - | 21 | - | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ |  | 1.5 | - | 8.8 | 1.5 | 11.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V |  | 1.5 | 4.8 | 7.5 | 1.5 | 9.5 | ns |
|  |  | $\overline{\mathrm{CET}}$ to TC; see Figure 9 [2] |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=1.2 \mathrm{~V}$ |  | - | 19 | - | - | - | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ |  | 1.5 | - | 7.2 | 1.5 | 9.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V |  | 1.5 | 4.1 | 6.2 | 1.5 | 8.0 | ns |
|  |  | $\mathrm{U} / \overline{\mathrm{D}}$ to $\overline{\mathrm{TC}}$; see Figure 10 [2] |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=1.2 \mathrm{~V}$ |  | - | 21 | - | - | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ |  | 1.5 | - | 8.2 | 1.5 | 10.5 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V |  | 1.5 | 3.7 | 6.9 | 1.5 | 9.0 | ns |
| tw | pulse width | CP HIGH or LOW; see Figure 8 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ |  | 5.0 | - | - | 5.0 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V |  | 4.0 | 1.2 | - | 4.0 | - | ns |
| $\mathrm{t}_{\text {su }}$ | set-up time | Dn to CP; see Figure 11 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ |  | 3.0 | - | - | 3.0 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V |  | 2.5 | 1.0 | - | 2.5 | - | ns |
|  |  | $\overline{\mathrm{PE}}$ to CP; see Figure 11 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ |  | 3.5 | - | - | 3.5 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V |  | 3.0 | 1.2 | - | 3.0 | - | ns |
|  |  | $\mathrm{U} / \overline{\mathrm{D}}$ to CP ; see Figure 12 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ |  | 6.5 | - | - | 6.5 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V |  | 5.5 | 2.8 | - | 5.5 | - | ns |
|  |  | $\overline{\mathrm{CEP}}, \overline{\mathrm{CET}}$ to CP ; see Figure 12 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ |  | 5.5 | - | - | 5.5 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V |  | 4.5 | 2.1 | - | 4.5 | - | ns |
| $t_{n}$ | hold time | Dn, $\overline{\mathrm{PE}}, \overline{\mathrm{CEP}}, \overline{\mathrm{CET}}, \mathrm{U} / \overline{\mathrm{D}}$ to CP ; see Figure 11 and 12 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ |  | 0.0 | - | - | 0.0 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V |  | 0.5 | 0.0 | - | 0.5 | - | ns |

Table 7. Dynamic characteristics ...continued
Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 13.

| Symbol | Parameter | Conditions |  | $-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  | $-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ[1] | Max | Min | Max |  |
| $\mathrm{f}_{\text {max }}$ | maximum frequency | see Figure 8 |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ |  | 150 | - | - | 150 | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V |  | 150 | 200 | - | 150 | - | MHz |
| $\mathrm{t}_{\text {sk(0) }}$ | output skew time | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | [3] | - | - | 1.0 | - | 1.5 | ns |
| $\mathrm{C}_{\text {PD }}$ | power dissipation capacitance | per input pin; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}$ | [4] |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V |  | - | 20 | - | - | - | pF |

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 2.7 \mathrm{~V}$, and 3.3 V respectively.
[2] $t_{p d}$ is the same as $t_{\text {PLH }}$ and $t_{\text {PHL }}$.
[3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
[4] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation ( $\mathrm{P}_{\mathrm{D}}$ in $\mu \mathrm{W}$ ).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ; $\mathrm{f}_{0}=$ output frequency in MHz
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V
$N=$ number of inputs switching
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs

## 11. Waveforms



Measurement points are given in Table 8.
Logic levels: $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are the typical output voltage levels that occur with the output load.
Fig 8. Clock (CP) to outputs (Qn, $\overline{\mathrm{TC}}$ ) propagation delays, the clock pulse width, and the maximum frequency


Measurement points are given in Table 8.
Logic levels: $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are the typical output voltage levels that occur with the output load.
Fig 9. Input (CET) to output (TC) propagation delays


Measurement points are given in Table 8.
Logic levels: $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are the typical output voltage levels that occur with the output load.
Fig 10. The up/down control input (U/ $\overline{\mathrm{D}}$ ) to output ( $\overline{\mathrm{TC}}$ ) propagation delays


The shaded areas indicate when the input is permitted to change for predictable output performance.
Measurement points are given in Table 8.
Logic levels: $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are the typical output voltage levels that occur with the output load.
Fig 11. Set-up and hold times for the input (Dn) and parallel enable input ( $\overline{\mathrm{PE}}$ )


The shaded areas indicate when the input is permitted to change for predictable output performance.
Measurement points are given in Table 8.
Logic levels: $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are the typical output voltage levels that occur with the output load.
Fig 12. Set-up and hold times for count enable inputs (CEP and CET) and control input (U/D)

Table 8. Measurement points

| Supply voltage | Input | Output |
| :--- | :--- | :--- |
| $\mathbf{V}_{\mathrm{CC}}$ | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{M}}$ |
| 1.2 V | $0.5 \mathrm{~V}_{\mathrm{CC}}$ | $0.5 \mathrm{~V}_{\mathrm{CC}}$ |
| 2.7 V | 1.5 V | 1.5 V |
| 3.0 V to 3.6 V | 1.5 V | 1.5 V |



Test data is given in Table 9
Definitions for test circuit:
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{L}=$ Load resistance
$R_{T}=$ Termination resistance should be equal to output impedance $Z_{0}$ of the pulse generator.
Fig 13. Test circuit for measuring switching times

Table 9. Test data

| Supply voltage | Input |  | Load |  | S1 position |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{V}_{\mathbf{I}}$ | $\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$ | $\mathbf{C}_{\mathbf{L}}$ | $\mathbf{R}_{\mathbf{L}}$ | $\mathbf{t}_{\mathbf{P L H}}: \mathbf{t}_{\mathbf{P H L}}$ |
| 1.2 V | $\mathrm{~V}_{\mathrm{CC}}$ | $\leq 2.0 \mathrm{~ns}$ | 30 pF | $500 \Omega \underline{[1]}$ | open |
| 2.7 V | 2.7 V | $\leq 2.5 \mathrm{~ns}$ | 50 pF | $500 \Omega$ | open |
| 3.0 V to 3.6 V | 2.7 V | $\leq 2.5 \mathrm{~ns}$ | 50 pF | $500 \Omega$ | open |

[1] The circuit preforms better when $R_{L}=1000 \mathrm{k} \Omega$.

## 12. Application information



001aaa650
Fig 14. Synchronous multistage counting scheme

## 13. Package outline



| UNIT | $\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $D^{(1)}$ | $E^{(1)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $L_{p}$ | Q | v | w | y | $\mathrm{Z}^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.75 | $\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$ | $\begin{aligned} & 1.45 \\ & 1.25 \\ & \hline \end{aligned}$ | 0.25 | $\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$ | $\begin{gathered} 10.0 \\ 9.8 \end{gathered}$ | $\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$ | 1.27 | $\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$ | 1.05 | $\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$ | 0.25 | 0.25 | 0.1 | 0.7 0.3 | $8^{\circ}$ |
| inches | 0.069 | $\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$ | 0.01 | $\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$ | $\begin{aligned} & 0.0100 \\ & 0.0075 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$ | 0.05 | $\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$ | 0.041 | $\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$ | $\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$ | 0.01 | 0.01 | 0.004 | $\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$ | $0^{\circ}$ |

Note

1. Plastic or metal protrusions of 0.15 mm ( 0.006 inch) maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  | - |
| SOT109-1 | $076 E 07$ | MS-012 |  |  | $-9-12-27$ |  |

Fig 15. Package outline SOT109-1 (SO16)
DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ <br> $\mathbf{m a x}$. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | $\mathbf{c}$ | $\mathbf{D}^{(\mathbf{1})}$ | $\mathbf{E}^{(1)}$ | $\mathbf{e}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{Q}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ | $\mathbf{Z}^{(\mathbf{1})}$ | $\boldsymbol{\theta}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 2 | 0.21 | 1.80 | 0.25 | 0.38 | 0.20 | 6.4 | 5.4 | 0.65 | 7.9 | 1.25 | 1.03 | 0.9 | 0.2 | 0.13 | 0.1 | 1.00 | $8^{0}$ |
|  | 0.05 | 1.65 |  | 0.25 | 0.09 | 6.0 | 5.2 | 0.6 | 7.6 |  | 0.63 | 0.7 | 0.2 |  | 0.13 | $0^{\circ}$ |  |  |

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  | $-99-12-27$ <br> $03-02-19$ |

Fig 16. Package outline SOT338-1 (SSOP16)

DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ <br> $\mathbf{m a x}$. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | $\mathbf{c}$ | $\mathbf{D}^{(\mathbf{1})}$ | $\mathbf{E}^{(\mathbf{2})}$ | $\mathbf{e}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{Q}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ | $\mathbf{Z}^{(\mathbf{1})}$ | $\boldsymbol{\theta}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.1 | 0.15 | 0.95 | 0.25 | 0.30 | 0.2 | 5.1 | 4.5 | 0.65 | 6.6 | 1 | 0.75 | 0.4 |  |  |  |  |  |
|  | 0.05 | 0.80 |  | 0.19 | 0.1 | 4.9 | 4.3 | 0.6 | 6.2 | 1 | 0.50 | 0.3 | 0.13 |  | 0.40 | $8^{0}$ |  |  |

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  | $-99-12-27$ <br> $03-02-18$ |

Fig 17. Package outline SOT403-1 (TSSOP16)

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$


detail X


5 mm
DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}^{(1)}$ <br> max. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{b}$ | $\mathbf{c}$ | $\mathbf{D}^{(1)}$ | $\mathbf{D}_{\mathbf{h}}$ | $\mathbf{E}^{(\mathbf{1})}$ | $\mathbf{E}_{\mathbf{h}}$ | $\mathbf{e}$ | $\mathbf{e}_{\mathbf{1}}$ | $\mathbf{L}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ | $\mathbf{y}_{\mathbf{1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1 | 0.05 | 0.30 | 0.2 | 3.6 | 2.15 | 2.6 | 1.15 | 0.5 | 2.5 | 0.5 | 0.1 | 0.05 | 0.05 | 0.1 |

Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

| OUTLINE VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  |
| SOT763-1 | --- | MO-241 | --- | $\square$ ¢ | $\begin{aligned} & \text { 02-10-17 } \\ & 03-01-27 \end{aligned}$ |

Fig 18. Package outline SOT763-1 (DHVQFN16)

## 14. Abbreviations

Table 10. Abbreviations

| Acronym | Description |
| :--- | :--- |
| CDM | Charged Device Model |
| DUT | Device Under Test |
| ESD | ElectroStatic Discharge |
| HBM | Human Body Model |
| TTL | Transistor-Transistor Logic |

## 15. Revision history

Table 11. Revision history

| Document ID | Release date | Data sheet status | Change notice | Supersedes |
| :--- | :--- | :--- | :--- | :--- |
| 74LVC169_5 | 20090608 | Product data sheet | - | 74LVC169_4 |

## 16. Legal information

### 16.1 Data sheet status

| Document status $[\underline{[1][2]}$ | Product status $[3]$ | Definition |
| :--- | :--- | :--- |
| Objective [short] data sheet | Development | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. |
| Product [short] data sheet | Production | This document contains the product specification. |

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

### 16.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

### 16.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

### 16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

## 17. Contact information

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

## 18. Contents

1 General description ..... 1
2 Features ..... 2
3 Ordering information ..... 2
4 Functional diagram ..... 3
5 Pinning information ..... 5
5.1 Pinning ..... 5
5.2 Pin description ..... 5
6 Functional description ..... 6
7 Limiting values ..... 8
8 Recommended operating conditions. ..... 8
9 Static characteristics. ..... 9
10 Dynamic characteristics ..... 10
11 Waveforms ..... 11
12 Application information. ..... 15
13 Package outline ..... 16
14 Abbreviations ..... 20
15 Revision history ..... 20
16 Legal information. ..... 21
16.1 Data sheet status ..... 21
16.2 Definitions ..... 21
16.3 Disclaimers ..... 21
16.4 Trademarks ..... 21
17 Contact information ..... 21
18 Contents ..... 22

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'

